Multi-Valued Byzantine Broadcast: the t < n Case

Martin Hirt, **Pavel Raykov** ETH Zurich

Asiacrypt 2014

Byzantine Broadcast

Broadcast Protocols

- For t < n/3 [PSL80,BGP92]
- For t < n (assuming setup) [DS83, PW96]

Broadcasting L Bits Efficiently

- Seminal protocols communicate Ω(Ln²)
- Optimal O(Ln)
- Solution special-purpose multi-valued protocols:
 - Optimal for t < n/3 [LV11,Pat11]</p>
 - Optimal for t < n/2 [FH06]</p>

Optimal for t < n [This work]

Overview of Our Protocol

1. Split message into many blocks:

3. Broadcast message block by block optimistically s.t. bad cases are limited.

4. Fine-tune q to make bad case costs small.

Optimistic Broadcast of Block b

1. Assume we can broadcast few bits

2. The sender broadcasts h(b)

3. Iteratively propagate b

Computing Costs

1. One iteration of block's b propagation costs $\approx |b| = \frac{L}{c}$

Good case [0 iterations are bad] $n \cdot |b|$ Bad case [d_i iterations are bad] $(n + d_i) \cdot |b|$

3. Broadcasting block by block (q blocks): $\sum_{i=1}^{q} (n+d_i) \cdot |b| = \sum_{i=1}^{q} n \cdot |b| + \sum_{i=1}^{q} d_i \cdot |b| \le Ln + n^2 \frac{L}{q}$

4. Fine-tuning q: Setting q to n achieves O(Ln).

Review of the Protocol

- 1. Split L-bit message in q blocks.
- 2. Optimistic block broadcast: good and bad cases.
- 3. Broadcast message block by block s.t. bad cases are limited.
- 4. Fine-tune q s.t. bad costs are small.

Universal Hashing

• Traditional hashing

IT Optimistic Broadcast of Block b

With crypto hash:

Extracting the Conflict

Lemma 1: All players form a "learning" tree with the sender in its root. Lemma 2: If >0 players have "+" and >0 players have "-", there is a (+,-) edge.

An Example of IT block Propagation

Computing Costs (IT Case)

1. One iteration of block's b propagation costs $\approx |b| = \frac{L}{2}$

3. Broadcasting block by block (q blocks)

$$\sum_{i=1}^{q} (n+d_i) \cdot |b| = \sum_{i=1}^{q} n \cdot |b| + \sum_{i=1}^{q} d_i \cdot |b| \le Ln + n \sqrt{q}$$

4. Fine-tuning q: Setting q to Machieves O(Ln).

Comparing Costs

• Crypto case

$Ω(Ln^2 + n^3 \kappa)$	[DS83]
O(Ln + n ⁵ κ)	Our Crypto construction

• IT case

$\Omega(Ln^2 + n^6 \kappa)$	[PW96]
O(Ln + n ¹⁰ κ)	Our IT construction

Conclusions

- The first communication-optimal multi-valued broadcast for t < n.
- Future research:
 - better concrete efficiency
 - tolerating mobile adversary